Источники питания

Доработка УНЧ компьютерных колонок

Доработка УНЧ компьютерных колонок

У различных компьютерных акустических систем среднего ценового сегмента (в частности Microlab PRO2 и Thonet & Vander Dass) был замечен один общий и сильно неприятный недостаток - при включении чего-то в соседнюю розетку в колонках слышится громкие раздражающие щелчки. Что особенно не радует в ночное время. Ручку громкости у компьютерных колонок удобно выкрутить до значения, близкого к максимальному, чтобы в будущем регулировать её в полном диапазоне с компьютера. Что не лучшим образом влияет на громкость тресков. Особенно громко щёлкали колонки при выключении очистителя воздуха для пайки, но и на всяческие мелкие импульсные блокои питания/зарядные устройства, включаемые и выключаемые из соседней (и не только) розетки реакция колонок тоже была неприятной. Обозначенная проблема - следствие тотальной экономии китайцами на всём при проектировании и производстве. Решение проблемы - добавить в схему то, на чём было сэкономлено.

При осмотре внутренностей акустики было замечено отсутствие какого-либо фильтра помех сетевого напряжения. Сами усилители в подобных устройствах традиционно делаются на микросхемах со встроенным стабилизатором, т.е., весь блок питания у них состоит из трансформатора, диодного моста и пары электролитических конденсаторов (в моих усилителях их ёмкость - 4700 мкФ на каждое плечо).

Для начала, решено было установить сетевой фильтр. Проблему щелчков при включении/выключении вентилятора в соседней розетке он не решит (в этом можно убедиться, подключив колонки к качественному внешнему сетевому фильтру - полностью щелчки не исчезают), но лишним точно не будет, учитывая обилие импульсных помех в розетке.

Следующий простой и очевидный способ улучшить качество питания - увеличить ёмкости "электролитов" хотя бы до 10 000 - 15 000 мкФ. При этом стоит учитывать то, что пусковые токи при зарядке таких емкостей так же увеличатся, и диодный мост должен иметь хороший запас по току, чтобы при включении ему не поплохело. Так же, для лучшей фильтрации, я добавил по дросселю в каждое плечо (получив Т-образный LC-фильтр).

Доработка питания 3D-принтера

БП для 3D-принтера

3D-принтеры бывают разные, но электроника подавляющего большинства любительских аппаратов делается на основе связки плат Arduino + RAMPS, либо одной платы MKS Gen. В качестве блока питания обычно служит БП для светодиодных лент. Он служит источником для питания электроники, шаговых двигателей, нагревателя(лей) экструдеров и термостола. И тут возникает ряд проблем, связанных с тем, что импульсные помехи от БП + помехи, создаваемые ШИМ-контроллером нагревателя экструдера прилетают на управляющий микроконтроллер. В результате возможны сбои и перезагрузка программы, появление мусора на экране, а также большие ошибки при измерении температуры экструдера (что может приводить к тому, что управляющая программа не может стабилизировать температуру нагревателя экструдера).

Для решения этой проблемы схема питания принтера была доработана: питание цифровой части отделено от питания нагревателей и подаётся через двойные LC-фильтры, эфективно снижающие уровень шума ИБП. Для питания нагревателей была добавлена плата управления на мощных полевых транзисторах.

Доработка позволила полностью избавится от проблем с питанием - после исправлений температура экструдера стала нормально устанавливаться, исчезли перезагрузки и мусор с экрана.

УФ стиральная машина для ПЗУ

Устройство для стирания УФ ПЗУ

Как известно, очистить ПЗУ с УФ-стиранием можно лампой ДРЛ с разбитой внешней колбой. Лампу надо подключать через дроссель, который можно заменить обычной лампой накаливания той же мощности, что и ДРЛ (или вязанкой из параллельно соединённых ламп). Без дросселя ДРЛ быстро сгорит. С лампами накаливания, как показывает опыт, ДРЛ всё равно сгорит, но гораздо медленнее - на несколько десятков стирок хватит. Колба постепенно чернеет, а сама лампа начинает светить всё хуже и хуже.. А ещё внутренняя колба ДРЛ активно генерирует озон при свечении, а озон имеет свойство убивать всё живое.

Появление мощных ультрафиолетовых светодиодов дало возможность сделать практически "вечную" стиралку для ретро-ПЗУ-шек. Светодиодом с длиной волны 365нм мощностью от 3Вт можно стереть память за ~5-60 минут в зависимости от микросхемы и её ёмкости (да, это не очень быстро, но куда торопиться?).

Мощному светодиоду требуется охлаждение, для чего он был установлен на небольшой радиатор с вентилятором. Питается эта конструкция от 12В БП, светодиод подключен через регулируемый DC/DC-преобразователь с ограничением тока. В завершении конструкция помещается в корпус, распечатанный на 3D-принтере. Корпус состоит из двух частей - блок питания и блок светодиода с кулером.

Преобразователь напряжения DC/DC в +12 и -5В

Преобразователь напряжения -5В и +12В

Преобразователь предназначен для ретро-компьютера Радио 86РК. “Сердцем” данной ЭВМ является микропроцессор КР580ВМ80А, для питания которого требуются три напряжения питания: +5В, -5В и +12В.

Напряжение +5В можно взять от внешнего блока питания, а -5В и +12 получить из него. Потребляемый микропроцессором ток от источника -5В составляет порядка одного миллиампера. Источник +12В должен обеспечивать ток не менее 75 мА для микропроцессора, плюс еще 12 мА для тактового генератора на микросхеме КР580ГФ24. Итого порядка 90 мА. Ещё для источников питания рекомендован запас по току в 2-3 раза.

Оба преобразователя выполнены на микросхемах MC34063, включённых по типовым схемам.

Светодиодный задний фонарь для мотоцикла

Светодиодный задний фонарь для мотоцикла

Данный фонарь я делал для мотоцикла Honda Steed на замену штатному. Оригинальный фонарь содержит две лампочки по 18 Вт / 5 Вт в японской версии и 21 Вт / 5 Вт в европейской. Итого, мощность ламп габаритного освещения составляет 10Вт, а мощность стоп-сигнала - 36 .. 42 Вт, что, как мне кажется, слишком много. При том, что мощность генератора данного мотоцикла - всего 345 Вт, и на питание всей электрики его хватает практически в обрез. Помимо чрезмерной прожорливости лампочки еще имеют неприятное свойство перегорать несколько раз за сезон.

Модернизация блока питания Dazheng PS-305D

Dazheng PS-305D

Блок питания Dazheng PS-305D, известный так же под именами Ya Xun Ps-305d и Yizhan PS-305D достаточно распространенный радиолюбительский прибор родом из Китая.

Основными особенностями этого китайского творения является его низкая для данной мощности цена и жуткий уровень шума, создаваемого вентилятором. Вентилятор установлен на задней стенке прибора, и затягивает воздух через боковые отверстия в передней части корпуса выдувает его сзади охлаждая при этом радиатор регулирующего транзистора (алюминиевая пластина толщиной около 3 мм), висящий в воздухе диодный мост, трансформатор и дает о себе знать сразу после включения БП громким неприятным шумом.

Подписка на Источники питания